Rheinmetall’s HEL Technology Successfully Tested

  • 12:00 AM, December 19, 2012
  • 2761
Rheinmetall has successfully tested its new 50kW high-energy weapon technology demonstrator. The test encompassed the entire operational sequence from target detection and tracking to target engagement. The tests were intended to prove that separately located HEL weapon stations using Rheinmetall’s existing Beam Superimposing Technology (BST) are able to irradiate a single target in a superimposed, cumulative manner. This modular technology approach makes it possible to maintain the very good beam quality of the individual laser modules, increasing overall performance several times over. Thus, from the technical stand-point, nothing stands in the way of a future HEL weapon system with a 100kW output. The 50kW HEL weapon technology demonstrator consisted of two functional models: a 30kW weapon station integrated into an Oerlikon Revolver Gun air defence turret for static and dynamic tests, coupled with an Oerlikon Skyguard fire control unit; and a 20kW weapon station integrated into a Revolver Gun turret of the first-generation, patched in for static tests. The successful shooting down of several nose-diving target drones at a range of two kilometres formed the second major highlight. Though they were flying at over 50 metres a second, the Skyguard radar had no trouble detecting the incoming unmanned aerial vehicles at a distance of three kilometers, according to an official statement. Then the 30kW weapon station used the Skyguard data to carry out rough tracking mechanically. The optical tracking system in the Beam Forming Units (BFU’s) in the individual leaser weapon modules performed fine tracking of the UAVs. After reaching the programmed fire sector the laser weapon modules engaged the UAV’s immediately and destroyed the incoming UAVs within a few seconds. The third highlight was the detection, pursuit and successful engagement of an extremely small ballistic target. A steel ball measuring 82 mm in diameter and travelling at approximately 50 m/sec, the target replicated a mortar round. The Skyguard fire control unit immediately detected the target, followed by mechanical tracking with the 30kW laser weapon station. At this point, the BFU of the laser weapon module took over, optically tracking the target, which was then engaged and destroyed in flight, leaving no doubt as to the tactical viability of using laser weapons in future C-RAM scenarios. Moreover, the test makes clear that the time necessary for engaging mortar rounds at long ranges can be substantially reduced, the statement added.
FEATURES/INTERVIEWS
© 2024 DefenseMirror.com - ALL RIGHTS RESERVED